Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 877: 162894, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36958555

RESUMO

Thinning is a widely-used management practice to reduce tree competition and improve wood production and quality in forest plantations. Thinning affects the soil ecosystem by changing the microclimate and plant growth, as well as litter inputs above and belowground, with all the resulting consequences for microbial communities and functions. Although many case studies have been carried out, a comprehensive understanding of the thinning effects on soil properties and microbial communities and functions in plantations remains to be explored. In this study, a meta-analysis was performed on 533 paired observations based on 90 peer-reviewed articles to evaluate the general responses of soil (mainly 0-20 cm depth) physicochemical properties, microbial biomass and community structure, and enzyme activities to thinning. Results showed that thinning increased soil temperature (13 %), moisture (8.0 %), electric conductivity (13 %), and the contents of total nitrogen (TN, 4.1 %), dissolved organic carbon (DOC, 9.7 %), nitrate N (NO3--N, 27 %) and available phosphorous (22 %). For microbial properties, thinning decreased the fungi to bacteria ratio (F:B, -28 %) and the gram-positive bacteria to gram-negative bacteria ratio (G+:G-, -12 %), while increased microbial biomass C (7.1 %), microbial respiration (13 %), and nutrient-cycle related enzyme activities, including phenol oxidase (14 %), cellobiohydrolase (21 %), urease (10 %), and acid phosphatase (9 %). In particular, moderate thinning (30-60 % intensity) has higher conservation benefits for soil C and nutrients than light and heavy intensity, thus being recommended as the optimal thinning activity. This meta-analysis suggests that thinning consistently altered soil properties, shifted microbial community compositions from K- to-r strategist dominance, and stimulated microbial activities. These results are essential for optimizing plantation thinning management and provide evidence for applying the macro-ecology theory to ecosystem disturbance in soil microbial ecology.


Assuntos
Microbiota , Solo , Solo/química , Ecossistema , Microbiologia do Solo , Florestas , Árvores , Biomassa , Nitrogênio/análise , Carbono/análise
2.
J Food Drug Anal ; 30(1): 163-171, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35647725

RESUMO

Based on the regulations of the Ministry of Health and Welfare (MOHW) of Taiwan in 2017, an analysis of 373 pesticides in food was conducted using the MOHW official method. The analyses involved the use of either liquid chromatography mass spectrometry (LC-MS) with electrospray ionization (ESI) or gas chromatography mass spectrometry (GC-MS) with electron ionization (EI). In this study, the applicability of detecting pesticides using atmospheric pressure chemical ionization (APCI) was investigated and evaluated. The pesticides were separated using an aqueous solution of ammonium formate with methanol as the mobile phase, and ionization efficiency was compared between APCI, ESI, and EI coupled with triple quadrupole mass spectrometer using multiple reaction monitoring (MRM) acquisition. Among the 196 pesticides that were originally analyzed by ESI, 164 could be successfully detected by APCI with 6 showing a higher sensitivity when APCI was used. Among the 177 pesticides that were analyzed by EI, 43 could be successfully detected by APCI. The results also showed that APCI gave superior ionization efficiency for pesticides containing triazine, imidazole, triazole, and pyrazole groups.


Assuntos
Praguicidas , Pressão Atmosférica , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...